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Abstract
Chest X-ray imaging is commonly used to diagnose pneumonia, but accurately localizing
the pneumonia affected regions typically requires detailed pixel-level annotations, which
are costly and time consuming to obtain. To address this limitation, this study proposes
a weakly supervised deep learning framework for pneumonia classification and localiza-
tion using Gradient-weighted Class Activation Mapping (Grad-CAM). Instead of relying on
costly pixel-level annotations, the proposed method utilizes image-level labels to generate
clinically meaningful heatmaps that highlight pneumonia affected regions. Furthermore,
we evaluate seven pre-trained deep learning models including a Vision Transformer under
identical training conditions, using focal loss and patient-wise splits to prevent data leakage.
Experimental results suggest that all models achieved high classification accuracy (96–98%),
with ResNet-18 and EfficientNet-B0 showing the best overall performance and MobileNet-
V3 providing an efficient lightweight alternative. Grad-CAM heatmap visualizations in this
study confirm that the proposedmethods focus on clinically relevant lung regions, supporting
the use of explainable AI for radiological diagnostics. Overall, this work highlights the
potential of weakly supervised, explainablemodels that enhance the transparency and clinical
trust in AI-assisted pneumonia screening.

Keywords: Chest X-ray, Explainable AI, Grad-CAM, Pneumonia Detection, Pneumonia
Localization, Weak Supervision

1. INTRODUCTION

Pneumonia is still a leading cause of morbidity and mortality worldwide, especially among children
and elderly individuals. Although chest X-ray imaging is the most common diagnostic tool [1],
interpreting chest X-rays can be a challenging task due to easily missed, subtle, and ambiguous
lesions. Variability in radiologists’ interpretations and the frequent oversight of small abnormal-
ities can make consistent diagnosis difficult [2]. These limitations highlight the need for reliable
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solutions. As artificial intelligence systems continue to mature, deep learning-based methods offer
strong potential for the accurate and efficient detection of pneumonia.

Prior research has demonstrated the state-of-the-art capabilities of Convolutional Neural Networks
(CNNs) and Vision Transformers (ViT) in various medical image analysis tasks, including pneu-
monia detection from chest X-rays[3]. However, most solutions operate in a ”black-box” approach,
offering limited insight into influential regions in the X-ray image that drive their decisions. Since
radiologists require transparent, localized explanations to verify model outputs, this lack of in-
terpretability restricts clinical adoption. Moreover, pixel-level annotations, such as segmentation
masks or bounding boxes, are necessary for fully supervised localization techniques; however, they
are costly and challenging to acquire at scale [4].

Weakly supervised learning (WSL) techniques offer a practical approach for spatial localization
using only image level labels, thereby avoiding the burdens of manual pixel wise annotations.
Among various WSL approaches, Gradient-weighted Class Activation Mapping (Grad-CAM) has
been widely adopted for visual explanations in radiology, highlighting the most influential regions
that contribute to model predictions. Therefore, interpretable heatmaps generated using Grad-
CAM enhance interpretability and provide clinicians with intuitive visual cues linking predictions
to underlying radiographic features.

This study presents a unified framework for pneumonia classification and Grad-CAM based weakly
supervised localization of pneumonia using chest X-rays. We benchmark seven different pre-trained
model, such as ResNet-18[5], ResNet50[5], DenseNet121[6], EfficientNet-B0[7], MobileNetV2[8],
MobileNetV3[9], and the transformer-based ViT-B16[10], under identical training conditions. This
article highlights the potential of explainable and weakly supervised AI methods to narrow the gap
between automated image interpretation and practical clinical decision-making.

The main contributions of this paper are as follows:

• We evaluate a Chest X-Rays dataset [3] with strict patient level split to prevent the data
leakage.

• We benchmark six pretrained CNN architectures and a Vision Transformer backbones under
identical training and evaluation settings.

• We integrate Grad-CAM and token activation visualization to produce radiologically mean-
ingful heatmaps aligned with lung regions, offering interpretable AI insights for clinicians.

• We identify MobileNet-V3 as an optimal trade off between accuracy and computational cost,
supporting real-time, edge and mobile health application.

The remainder of the paper is organised as follows. Section 2 reviews previous studies on pneumo-
nia detection, weakly supervised learning and the use of explainability in pneumonia localisation.
Section 3 describes the methods and neural architectures employed in the experiments. Section 4
presents the experimental setup, datasets, and analysis of the results. Finally, Section 5 provides the
conclusion and future work.
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2. RELATEDWORK

In 2018, Kermany et al. [3] introduced a large chest X-ray dataset dedicated to pneumonia detec-
tion, which opened new opportunities for researchers in medical image analysis. Early research
on pneumonia detection primarily relied on supervised learning methods and focused mainly on
pneumonia classification. For instance, Tilve et al. [11] benchmarked pneumonia detection using
both traditional machine learning techniques, such as k-nearest neighbors (KNN), and modern
convolutional neural network (CNN) approaches, demonstrating the superior performance of CNN-
based supervised methods. Erdem and Aydın [12] further proposed a novel CNN framework with
separable blocks and transfer learning for efficient pneumonia detection. Similarly, Zavaleta et
al. [13] demonstrated that lightweight architectures such as MobileNetV2 achieve a favorable
balance between predictive accuracy and computational efficiency. Although these supervised
models achieved strong classification performance, they relied heavily on large, manually labeled
datasets, making them costly to train and prone to overfitting and poor generalization.

Weakly supervised learning (WSL) has emerged as a promising solution to reduce dependence
on expensive, pixel-level annotations required for fully supervised models [14]. WSL utilizes
incomplete or inexact supervision, such as image-level labels or free-text radiology reports, to enable
large-scale model training [15, 16]. Tam et al. [15] introduced a multimodal framework combining
object detection with natural language processing (NLP) for semantically grounded localization.
Subsequent work extended these ideas using transformer and generative architectures. Saber et
al. [17] proposed a multi-scale transformer with lung segmentation and attention mechanisms,
while Keshavamurthy et al. [18] developed a GAN-based WSL model for fine-grained pneumonia
localization without bounding-box labels. Other CNN-based WSL methods [19–21] demonstrated
accurate localization using only image-level supervision.

While weakly supervised methods are continuously advancing in pneumonia detection, most studies
still rely on complex architectures or domain-specific annotations, which limit reproducibility and
clinical deployment. Moreover, few works systematically compare CNN and transformer back-
bones under identical training and evaluation settings. In addition, due to the black-box nature of
AI models, many prior studies remain limited to non-interpretable approaches, creating hesitation
toward clinical adoption. This study addresses these gaps by introducing a unified benchmarking
framework for weakly supervised pneumonia localization using Grad-CAM across seven pretrained
models, emphasizing interpretability, computational efficiency, and clinical relevance.

3. METHODS

As illustrated in FIGURE 2, the proposed framework follows a standard deep learning pipeline con-
sisting of dataset preprocessing, feature extraction using pretrained model, training and evaluation
of model performance. Furthermore, we compute the class activation maps to create heatmaps that
localize the pneumonia affected regions.
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3.1 Dataset

We used the publicly available Chest X-ray dataset [3]. In this dataset, 1583 X-ray images are in
normal class and 4273 are in pneumonia class including both train and test set. In train set 1349
images are in normal class and 3884 images are in pneumonia class. Similarly, in test set 234 images
are in normal class and 390 images are in pneumonia class. However, during dataset inspection, we
observed that some patients ids were on both training and test sets, which could cause data leakage.
To address this issue, we merged the original splits and re-partitioned the dataset at the patient
level into training (70%), validation (15%), and test (15%) sets. Each image was resized to 224 x
224 pixels to match the input requirements of ImageNet-pretrained backbones. Since the original
images were grayscale, we duplicated the channel three times to create a pseudo-RGB input to
match the input shape for pretrained backbones. Further, to enhance generalization, we applied data
augmentation including random rotation, horizontal flipping, brightness/contrast adjustment, and
Gaussian noise. Dataset splitting was performed at the patient level to prevent data leakage, with
70% of patients for training, 15% for validation, and 15% for testing.

Table 1: Dataset distribution after splitting.

Subset NORMAL PNEUMONIA
Train (70%) 1,114 2,951

Validation (15%) 232 653
Test (15%) 237 669

Figure 1: Sample chest X-ray images from the dataset: (a) Normal, (b) Pneumonia (Bacterial), and
(c) Pneumonia (Viral).

3.2 Model Architectures

In this study, we evaluated seven different widely used ImageNet pretrained models to explore
different trade-offs between accuracy, efficiency and representational power. These include resid-
ual networks, densely connected networks, parameter-efficient scaling methods, mobile optimized
networks, and transformer based models.

• ResNet18 and ResNet50 [5]: Residual networks (ResNet) were introduced by Kaiming He
et al. in 2015 to address the vanishing gradient problem by introducing skip connections that
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Figure 2: Model Architecture

enable more stable gradients to flow across layers. ResNet-18, with its 18 layers serves as a
lightweight baseline, whereas ResNet-50 with its deeper 50 layers architecture, captures more
complex hierarchical features.

• DenseNet121 [6]: In 2016, Gao Huang et al. introduced DenseNet, which improves feature
reuse and gradient propagation by connecting each layer to all subsequent layers. This de-
sign leads to compact models with fewer parameters while retaining strong representational
capacity.

• EfficientNet-B0 [7]: EfficientNet introduces a compound scaling method that uniformly
scales depth, width and resolution using a fixed coefficient. This results in highly parameter-
efficient models that achieve strong accuracy with fewer computational resources.

• MobileNetV2 [8] andMobileNetV3 [9]: MobileNetV2 andMobileNetV3 are lightweight ar-
chitectures designed for efficient deployment on mobile and edge devices. MobileNetV2 em-
ploys inverted residual blocks with linear bottlenecks to reduce computational cost, while Mo-
bileNetV3 further integrates squeeze-and-excitation modules and neural architecture search to
improve the latency–accuracy trade-off.

• ViT-B16 [10]: Transformer architectures have become the de facto standard for natural lan-
guage processing tasks. Building on this success, AlexeyDosovitskiy et al. extended the trans-
former framework to vision by proposing theVision Transformer (ViT), which replaces convo-
lutional operations with self-attention and processes images as sequences of non-overlapping
patches. In this study, we include the ViT-B/16 model to compare transformer-based archi-
tectures with traditional CNNs. ViT-B/16 splits each image into 16×16 pixel patches and
processes the resulting sequence using a transformer encoder.

All of the abovementioned pretrainedmodels were integrated with a custom classification head con-
sisting of fully connected layers, batch normalization, ReLU activation and dropout layers ensuring
fair comparison.

3.3 Training Procedure

All models were initialized with ImageNet-pretrained weights to leverage transfer learning. Train-
ing was conducted under identical protocols to ensure a fair comparison between backbones.
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• Input preprocessing: Each image was resized to 224×224 pixels and normalized with Ima-
geNet mean and standard deviation. Since the dataset is grayscale, the channel was duplicated
three times to create a pseudo-RGB input to match the input shape of pretrained models.

• Data augmentation: To improve generalization and mitigate overfitting, ±15◦ rotations,
±5% affine transformation, 5% brightness contrast adjustment, CLAHE, gamma correction,
Gaussian noise, motion blur, median blur and coarse dropout were applied.

• Loss functions: We evaluated three options Cross-Entropy Loss, Weighted Cross-Entropy
Loss, and Focal Loss [22]. Focal Loss was ultimately chosen as it provided improved handling
of the severe class imbalance (404 normal vs. 3692 pneumonia images).
The Focal Loss is an extension of the standard binary cross-entropy to better handle class
imbalance by reducing the relative loss for well-classified class. It introduces a focusing
parameter 𝛾 that down-weights easy samples, allowing the model to concentrate more on hard
or misclassified cases.
Mathematically the binary focal loss function is defined as:

𝐿 (𝑦, 𝑝) = −𝛼 𝑦(1 − 𝑝)𝛾 log(𝑝) − (1 − 𝛼)(1 − 𝑦) 𝑝𝛾 log(1 − 𝑝)

where 𝑦 ∈ {0, 1} is the ground-truth label and 𝑝 ∈ [0, 1] is the predicted probability for
the positive class. The parameter 𝛾 controls how strongly easy examples are down weighted
higher values increase the focus on hard samples while 𝛼 balances the importance between
positive and negative classes. When 𝛾 = 0, the Focal Loss simplifies to the standard weighted
binary cross-entropy loss.

• Class imbalance strategies: In addition to Focal Loss, we applied random over-sampling
of minority class during training. This ensured that each mini-batch was more balanced and
prevented the model from being biased toward the pneumonia class.

• Optimizer and hyperparameters: All models were trained using the Adam optimizer with a
learning rate of 1× 10−4 and a weight decay of 1× 10−4.Training was performed with a batch
size of 32 for up to 10 epochs, with early stopping applied to prevent overfitting.

• Model checkpoint and early stopping: For each training loop, the best model checkpoint was
selected according to validation accuracy and ROC-AUC score. Early stopping was employed
to mitigate overfitting when no improvement in validation performance was observed for three
consecutive epochs.

• Evaluation: After each training loop, each model was evaluated on an independent test set
of chest X-ray images. To ensure fairness and reproducibility, we assessed our methods using
standard evaluation metrics, including accuracy, ROC-AUC, PR-AUC, and the best F1-score.
Each evaluationmetric is explained in the following sectionwith its mathematical formulation.

3.4 Performance Evaluation Metrics

To systematically assess model performance, we employed a set of evaluation metrics designed
to measure both classification accuracy and clinical relevance in class-imbalanced conditions. To
formulate evaluation metrics mathematically, let us assume TP, TN, FP, and FN represents true
positives, true negatives, false positives, and false negatives, respectively.
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Accuracy:
Accuracy =

TP + TN
TP + TN + FP + FN

Accuracy measures the proportion of correct predictions both true pneumonia cases (TP) and true
normal cases (TN) out of all predictions. However, accuracy can be misleading in imbalanced
datasets because it may overestimate performance by favoring the majority class. Therefore, we
evaluate our models using additional class-imbalance–aware metrics.

Precision (Positive Predictive Value):

Precision =
TP

TP + FP

Precision quantifies how many of model’s positive predictions were actually true positive.

Recall (Sensitivity or True Positive Rate):

Recall =
TP

TP + FN

Similarly, recall measures how many of the actual positive cases (pneumonia) the model correctly
identifies. A high recall indicates that the model misses very few pneumonia cases. This is clini-
cally important because false negatives failing to detect pneumonia can lead to potentially serious
consequences.

Specificity (True Negative Rate):

Specificity =
TN

TN + FP

Specificity measures how well the model identifies normal cases. A high specificity indicates that
few normal X-rays are incorrectly predicted as pneumonia.

F1-score:
𝐹1 = 2 · Precision · Recall

Precision + Recall
The F1-score is the harmonic mean of precision and recall. In this study, we report the best F1-score
obtained across all classification thresholds.

ROC-AUC (Receiver Operating Characteristic – Area Under the Curve): The ROC-AUC
represents the model’s overall ability to distinguish between pneumonia and normal cases across
all classification thresholds. A higher ROC-AUC indicates stronger discriminative performance,
independent of the decision threshold.

PR-AUC (Precision–Recall – Area Under the Curve): The PR-AUC summarizes the trade-off
between precision and recall across all thresholds. It is particularly informative in imbalanced
datasets because it emphasizes the model’s ability to correctly detect the minority class.
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3.5 Pneumonia Localization

To highlight the most influential regions in predictions, we employ Gradient weighted Class Ac-
tivation Mapping (Grad-CAM) [23] serving as a weakly supervised localization mechanism and
enhancing clinical interpretability. For CNN based architectures, Grad-CAM is computed using the
feature maps and gradients of the last convolution layer, which provide a direct spatial correspon-
dence with the input image. Whereas, ViT operate on patch embeddings instead of convolution
features, therefore we extend Grad-CAM formulation by capturing activations and gradients from
the final MLP block of the last transformer encoder layer.

3.5.1 Grad-CAM for CNN Architectures

In convolutional architectures such as ResNet, DenseNet, and MobileNet, Grad-CAM is applied to
the last convolutional layer, which retains the highest-level semantic and spatial information. Let
𝐴 ∈ R𝐶×𝐻×𝑊 denote the activation maps of this layer, and ∇𝑌𝑐 ∈ R𝐶×𝐻×𝑊 represent the gradients
of the predicted class score 𝑌𝑐 with respect to these activations. The channel-wise importance
weights are obtained by global average pooling of the gradients:

𝛼𝑘 =
1

𝐻𝑊

𝐻∑
𝑖=1

𝑊∑
𝑗=1

∇𝑌𝑐 [𝑘, 𝑖, 𝑗], (1)

and the class-discriminative heatmap is computed as:

CAM(𝑖, 𝑗) = ReLU

(
𝐶∑
𝑘=1

𝛼𝑘𝐴𝑘 (𝑖, 𝑗)
)
. (2)

The resulting activation map is upsampled to match the original image resolution and combined
with the input image to generate a heatmap overlay that highlights the regions most responsible for
the model’s decision.

3.5.2 Grad-CAM for Vision Transformers

Vision Transformers (ViTs) replace convolutional filters with tokenized patch embeddings, requir-
ing amodification of the Grad-CAM formulation. We capture activations from the final Linear layer
of the last MLP block within the last transformer encoder, which preserves spatially meaningful
representations for all image patches. Let 𝐴 ∈ R𝑁×𝐶 be the activations of 𝑁 patch tokens (excluding
the class token) and∇𝑌𝑐 ∈ R𝑁×𝐶 the corresponding gradients of the predicted class. The importance
weights are computed as:

𝛼𝑘 =
1
𝑁

𝑁∑
𝑖=1

∇𝑌𝑐 [𝑖, 𝑘], (3)
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and the patch-level class activation map is obtained as:

CAM(𝑖) = ReLU

(
𝐶∑
𝑘=1

𝛼𝑘𝐴[𝑖, 𝑘]
)
. (4)

The one-dimensional patchmap is reshaped into a 2D grid (𝐻𝑝×𝑊𝑝) based on the number of patches
and subsequently upsampled to the input image resolution. The resulting heatmap is overlaid on the
original image to visualize the spatial contribution of each patch to the prediction.

This unified Grad-CAM framework provides consistent visual interpretability across both CNN and
transformer-based backbones, enabling qualitative comparison of their attention on diagnostically
relevant regions.

3.6 Quantitative Localization Evaluation

Since pixel-level annotations are not available in chest X-ray dataset, we adopt a lightweight quan-
titative metric to evaluate the anatomical consistency of Grad-CAM explanations. Specifically, we
compute a Lung Attention Ratio (LAR), defined as the proportion of Grad-CAM activation energy
that falls within a coarse lung region of interest (ROI).

The lung ROI is defined using a fixed thoracic anatomical prior that excludes image borders and sub-
diaphragmatic regions. This ROI does not represent precise lung segmentation and is used solely
for evaluation purposes. For each input image, Grad-CAM heatmaps are normalized and only the
top 20% of activation values are retained to suppress background noise. LAR is then computed as
the ratio of activation within the lung ROI and the total activation across the image, as shown in Eq
(5).

Quantitative evaluation is performed on a fixed representative subset of test images from each class,
and the same subset is used across all evaluated architectures.

LAR =

∑
(𝑥,𝑦) ∈Ωlung 𝐴(𝑥, 𝑦)∑

(𝑥,𝑦) 𝐴(𝑥, 𝑦)
(5)

where 𝐴(𝑥, 𝑦) denotes the Grad-CAM activation at spatial location (𝑥, 𝑦), Ωlung represents the
coarse lung region of interest, and Ω denotes the full image domain.

4. EXPERIMENTS

The details of the experiments, including the datasets, loss functions, model training, results and
analysis are described as follows:
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Figure 3: Illustration of the coarse lung region of interest (ROI) used for quantitative localization
evaluation.
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4.1 Experimental Setup

All models were trained under identical conditions to ensure fair comparison. Training and evalua-
tion were performed using PyTorch 2.8.0+cu126 on an NVIDIA T4 GPU with 15 GB VRAM. The
batch size was 32, learning rate 1 × 10−4, and weight decay 1 × 10−4. Each model was trained for
10 epochs with early stopping based on validation ROC-AUC. The best checkpoint per backbone
was saved and later evaluated on the independent test split. Evaluation metrics include Accuracy,
ROC-AUC, PR-AUC and Best F1.

4.2 Result

Table 2: Performance comparison among the evaluated architectures on the Chest X-Rays
dataset [3].

Model Val Acc Test Acc ROC-AUC PR-AUC F1 Params (M)
ResNet-18 97.5% 98% 0.9971 0.9990 0.987 11.5
ResNet-50 96.8% 96% 0.9952 0.9983 0.981 24.6
DenseNet-121 97.9% 97% 0.9955 0.9984 0.984 7.5
EfficientNet-B0 96.9% 98% 0.9971 0.9989 0.987 4.7
MobileNet-V2 95.6% 97% 0.9946 0.9980 0.982 2.9
MobileNet-V3 96.2% 97% 0.9971 0.9990 0.987 4.9
ViT 96.2% 97% 0.9971 0.9990 0.987 86.2

Table 3: Per class quantitative evaluation of performance (Precision, Recall, Specificity) for all
evaluated architectures on the Chest X-Ray test set [3].

Model Class Precision Recall Specificity
ResNet-18 Normal 0.97 0.96 0.994

Pneumonia 0.99 0.99 0.958
ResNet-50 Normal 0.93 0.94 0.993

Pneumonia 0.98 0.97 0.966
DenseNet-121 Normal 0.97 0.93 0.928

Pneumonia 0.99 0.96 0.991
EfficientNet-B0 Normal 0.95 0.97 0.966

Pneumonia 0.99 0.98 0.983
MobileNet-V2 Normal 0.94 0.95 0.993

Pneumonia 0.98 0.98 0.966
MobileNet-V3 Normal 0.93 0.97 0.970

Pneumonia 0.99 0.97 0.975
ViT Normal 0.95 0.95 0.953

Pneumonia 0.98 0.98 0.981

Overall, all evaluated architectures achieved strong discriminative performance on the pneumo-
nia classification task, with test accuracies ranging between 96–98%. Among them, ResNet-18
and EfficientNet-B0 achieved the highest test accuracy of 98% with an F1-score of 0.987, while
maintaining ROC-AUC and PR-AUC values above 0.997. Despite its smaller size, MobileNet-V3
Large delivered comparable accuracy of 97%, demonstrating its suitability formobile and embedded
clinical applications. In contrast, deeper backbones such as ResNet-50 and DenseNet-121 exhibited
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marginally lower generalization performance, suggesting mild overfitting. These results indicate
that compact architectures, when combined with focal loss and patient-wise splitting, can achieve
high diagnostic accuracy while remaining computationally efficient.

FIGURE 4, illustrates Grad-CAM overlays for representative Normal, Bacterial, and Viral Pneu-
monia samples across the evaluated architectures. For Normal chest X-rays, activation responses
are generally weak and spatially diffuse, often extending beyond lung boundaries, indicating low
diagnostic confidence in the absence of pathology. An exception is DenseNet-121, which exhibits
spurious activation along the left lung region, suggesting mild sensitivity to background intensity
variations or residual noise.

Table 4: Quantitative Grad-CAM localization using LungAttention Ratio (LAR) on a representative
subset of the test set.

Model Normal Bacterial Pneumonia Viral Pneumonia
ResNet-18 0.547 ± 0.157 0.242 ± 0.137 0.375 ± 0.158
ResNet-50 0.593 ± 0.119 0.320 ± 0.086 0.272 ± 0.190
DenseNet-121 0.448 ± 0.241 0.417 ± 0.128 0.429 ± 0.143
EfficientNet-B0 0.589 ± 0.163 0.343 ± 0.163 0.225 ± 0.214
MobileNet-V2 0.612 ± 0.128 0.410 ± 0.201 0.409 ± 0.180
MobileNet-V3 0.553 ± 0.184 0.693 ± 0.072 0.584 ± 0.280
ViT-B/16 0.172 ± 0.038 0.605 ± 0.133 0.381 ± 0.096

In contrast, pneumonia cases produce focused and high-intensity activations within pulmonary
regions corresponding to radiographic opacities, particularly in the middle and lower lung zones.
Among the CNN backbones, MobileNet-V3 produces the most compact and noise-free localization
across classes, while ResNet-18 and DenseNet-121 also demonstrate well-defined activations for
pneumonia cases. Although EfficientNet-B0 achieves high classification accuracy (98%), its Grad-
CAM visualizations are comparatively diffuse and occasionally midline-biased. Similarly, ResNet-
50 displays intermittent off-target hotspots.

Quantitative localization results are summarized in TABLE 4. MobileNet-V3 achieves stable lung-
focused attention for pneumonia cases, with a Lung Attention Ratio (LAR) of 0.693 with deviation
of 0.072 for Bacterial Pneumonia, indicating low variance and consistent localization behavior.
In contrast, ViT-B/16 exhibits clearer discrimination between Normal and Bacterial Pneumonia
samples, with a substantially lower LAR for Normal images 0.172 with deviation of 0.038 and
higher LAR for Bacterial Pneumonia 0.605. However, its separation for Viral Pneumonia is less
pronounced 0.381 with deviation of ±0.096, reflecting broader and more diffuse attention patterns
associated with global self-attention.

Overall, the combined qualitative and quantitative analyses demonstrate that the proposed models
predominantly attend to clinically meaningful lung regions. In particular, MobileNet-V3 achieves
a favorable balance between localization stability, interpretability, and computational efficiency,
reinforcing its potential for trustworthy and deployable AI-assisted pneumonia screening.
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(a) ResNet / DenseNet / EfficientNet.

(b) MobileNet and ViT.

Figure 4: Grad-CAM overlays for a normal chest X-ray and two pneumonia cases (bacterial, viral)
across seven backbones. Bright regions indicate strong model attention toward pneumonia related
features.
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5. CONCLUSION AND FUTUREWORKS

This study benchmarked multiple CNN backbones and Vision Transformer for weakly supervised
pneumonia localization using only image level supervision. All models achieved high discrimina-
tive performance, with test accuracies ranging from 96% to 98%. ResNet-18 and EfficientNet-B0
consistently outperformed deeper networks, demonstrating that compact architectures can general-
ize well when trained with class-balanced sampling and focal loss. Grad-CAM heatmaps confirmed
that attention focused on radiologically relevant opacities, validating interpretability and trustwor-
thiness. The results further show that lightweight models, such as MobileNet-V3, can deliver near
state-of-the-art (SOTA) accuracy with low computational cost, facilitating edge device or mobile
health deployments.

Although the proposed framework demonstrates the effectiveness of Grad-CAM based weakly
supervised localization for pneumonia detection, several opportunities for extension remain open
for future investigations, as outlined below.

• This research is currently limited to a single dataset. Further work should involve evaluation
on larger and more diverse datasets, such as RSNA Pneumonia and NIH ChestX-ray14, to
enhance robustness and generalization.

• Further extensions may explore multi-label thoracic disease localization, radiologist reader
studies, and mobile deployment optimizations to strengthen 11 the framework’s clinical rele-
vance and translational impact.

Overall, this study highlights that explainable and weakly supervised deep-learning methods can
bridge the gap between black-box image classification and clinically interpretable decision support
for pneumonia detection.
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